Type VI secretion system contributes to Enterohemorrhagic Escherichia coli virulence by secreting catalase against host reactive oxygen species (ROS)

نویسندگان

  • Baoshan Wan
  • Qiufen Zhang
  • Jinjing Ni
  • Shuxian Li
  • Donghua Wen
  • Jun Li
  • Haihan Xiao
  • Ping He
  • Hong-Yu Ou
  • Jing Tao
  • Qihui Teng
  • Jie Lu
  • Wenjuan Wu
  • Yu-Feng Yao
چکیده

Enterohemorrhagic Escherichia coli (EHEC) is one major type of contagious and foodborne pathogens. The type VI secretion system (T6SS) has been shown to be involved in the bacterial pathogenicity and bacteria-bacteria competition. Here, we show that EHEC could secrete a novel effector KatN, a Mn-containing catalase, in a T6SS-dependent manner. Expression of katN is promoted by RpoS and OxyR and repressed by H-NS, and katN contributes to bacterial growth under oxidative stress in vitro. KatN could be secreted into host cell cytosol after EHEC is phagocytized by macrophage, which leads to decreased level of intracellular reactive oxygen species (ROS) and facilitates the intramacrophage survival of EHEC. Finally, animal model results show that the deletion mutant of T6SS was attenuated in virulence compared with the wild type strain, while the deletion mutant of katN had comparable virulence to the wild type strain. Taken together, our findings suggest that EHEC could sense oxidative stress in phagosome and decrease the host cell ROS by secreting catalase KatN to facilitate its survival in the host cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generation of reactive oxygen species by lethal attacks from competing microbes.

Whether antibiotics induce the production of reactive oxygen species (ROS) that contribute to cell death is an important yet controversial topic. Here, we report that lethal attacks from bacterial and viral species also result in ROS production in target cells. Using soxS as an ROS reporter, we found soxS was highly induced in Escherichia coli exposed to various forms of attacks mediated by the...

متن کامل

A degenerate type III secretion system from septicemic Escherichia coli contributes to pathogenesis.

The type III secretion system (T3SS) is an important virulence factor used by several gram-negative bacteria to deliver effector proteins which subvert host cellular processes. Enterohemorrhagic Escherichia coli O157 has a well-defined T3SS involved in attachment and effacement (ETT1) and critical for virulence. A gene cluster potentially encoding an additional T3SS (ETT2), which resembles the ...

متن کامل

The StcE protease contributes to intimate adherence of enterohemorrhagic Escherichia coli O157:H7 to host cells.

Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a diarrheal pathogen that causes attaching and effacing (A/E) lesions on intestinal epithelial cells. Strains of the O157 serogroup carry the large virulence plasmid pO157, which encodes the etp type II secretion system that secretes the genetically linked zinc metalloprotease StcE. The Ler regulator controls expression of many genes involved...

متن کامل

Enterohemorrhagic Escherichia coli Virulence Gene Regulation.

Coordinated expression of enterohemorrhagic Escherichia coli virulence genes enables the bacterium to cause hemorrhagic colitis and the complication known as hemolytic-uremic syndrome. Horizontally acquired genes and those common to E. coli contribute to the disease process, and increased virulence gene expression is correlated with more severe disease in humans. Researchers have gained conside...

متن کامل

Catabolite and Oxygen Regulation of Enterohemorrhagic Escherichia coli Virulence

The biogeography of the gut is diverse in its longitudinal axis, as well as within specific microenvironments. Differential oxygenation and nutrient composition drive the membership of microbial communities in these habitats. Moreover, enteric pathogens can orchestrate further modifications to gain a competitive advantage toward host colonization. These pathogens are versatile and adept when ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2017